

Boomer Documentation

	What is Boomer?
	Features

	Installation
	The goczmq dependency

	Quickstart
	Code

	Test

	Build

	Run

	Open up Locust’s web interface

	Running Mode
	Distributed

	Standalone

	Custom output
	OnStart

	OnEvent

	OnStop

	API

	Options
	--master-host

	--master-port

	--run-tasks

	--max-rps

	--request-increase-rate

	--cpu-profile

	--cpu-profile-duration

	--mem-profile

	--mem-profile-duration

	Profiling
	CPU Profiling

	Memory Profiling

Indices and tables

	Index

	Module Index

	Search Page

What is Boomer?

Boomer is a golang library and works with Locust [http://locust.io].

Using goroutines to run you code concurrently will outperform the gevent implementation in Locust.
That’s why I created this project.

Remember, use it as a library, not a general-purpose benchmarking tool.

Features

	Write user test scenarios in golang

Just put you test scenarios in a normal function, boomer will spawn goroutines to run the function
for many times to produce stress.

	Build-in rate limit support

You can put rate limit on each boomer instance, which is useful when you just want to evaluate if
the target is able to handle specific requests per second, instead of exhausting the target.

	Different output destination

You can write you own output implementation to collect the test result.

Installation

Boomer can be installed and updated with the “go get” command.

install:

$ go get github.com/myzhan/boomer

update:

$ go get -u github.com/myzhan/boomer

If you want to point to a particular revision of boomer, you should use a dependency management
tool like dep [https://github.com/golang/dep] or go module.

The goczmq dependency

Locust uses the zeromq protocol, so boomer depends on a zeromq client. Boomer uses
gomq [https://github.com/zeromq/gomq] by default, which is a pure Go implementation.

Because of the instability of gomq, you can switch to goczmq [https://github.com/zeromq/goczmq].

Once install goczmq successfully, then you can build with goczmq instead of gomq.

$ go build -tags 'goczmq' your-code.go

Quickstart

Code

This is a quick example of writing test scenarios with boomer.

package main

import "time"
import "github.com/myzhan/boomer"

func foo(){
 start := time.Now()
 time.Sleep(100 * time.Millisecond)
 elapsed := time.Since(start)

 /*
 Report your test result as a success
 */
 boomer.RecordSuccess("http", "foo", elapsed.Nanoseconds()/int64(time.Millisecond), int64(10))
}

func bar(){
 start := time.Now()
 time.Sleep(100 * time.Millisecond)
 elapsed := time.Since(start)

 /*
 Report your test result as a failure
 */
 boomer.RecordFailure("udp", "bar", elapsed.Nanoseconds()/int64(time.Millisecond), "udp error")
}

func main(){
 task1 := &boomer.Task{
 Name: "foo",
 // The weight is used to distribute goroutines over multiple tasks.
 Weight: 10,
 Fn: foo,
 }

 task2 := &boomer.Task{
 Name: "bar",
 Weight: 20,
 Fn: bar,
 }

 boomer.Run(task1, task2)
}

Here we define two tasks, task1 reports a success to boomer every 100 milliseconds, and meanwhile
task2 reports a failure. The weight of task1 is 10, and the weight of task2 is 20, if the locust
master asks boomer to spawn 30 users, then task1 will get 10 goroutines to run and task2 will get 20.
The numbers of users can be specified in the Web UI.

Test

Because task1 is named foo and tasks2 is named bar, you can run them without connecting to the master.

$ go run --run-tasks foo,bar

In this case, task1 and task2 will be run for one time with no output.

You can add logs to ensure your tasks running correctly.

Build

$ go build -o you-code you-code.go

Run

	Start the locust master with the included dummy.py.

$ locust --master -f dummy.py

So far, dummy.py is necessary when starting a master, because locust needs such a file.

Don’t worry, dummy.py has nothing to do with your test.

	Start you test program.

$ chmod +x ./you-code && ./you-code

Note

To see all available options type: you-code --help

Open up Locust’s web interface

Once you’ve started Locust and boomer, you should open up a browser and point it to http://127.0.0.1:8089 (if you are running Locust locally).

Running Mode

Currently, boomer has two running mode, standalone and distributed.

Distributed

When running in distributed mode, boomer will connect to a locust master and running
as a slave. It’s the default running mode of boomer.

Standalone

When running in standalone mode, boomer doesn’t need to connect to a locust master
and start testing immediately.

By default, the standalone mode works with a ConsoleOutput, which will print the
test result to the console, you can write you own output and add more by calling
boomer.AddOutput().

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	package main

import (
	"log"
	"time"

	"github.com/myzhan/boomer"
)

func foo() {
	start := time.Now()
	time.Sleep(100 * time.Millisecond)
	elapsed := time.Since(start)

	// Report your test result as a success, if you write it in python, it will looks like this
	// events.request_success.fire(request_type="http", name="foo", response_time=100, response_length=10)
	globalBoomer.RecordSuccess("http", "foo", elapsed.Nanoseconds()/int64(time.Millisecond), int64(10))
}

var globalBoomer *boomer.Boomer

func main() {
	log.SetFlags(log.LstdFlags | log.Lshortfile)

	task1 := &boomer.Task{
		Name: "foo",
		Weight: 10,
		Fn: foo,
	}

	numClients := 10
	spawnRate := 10
	globalBoomer = boomer.NewStandaloneBoomer(numClients, spawnRate)
	globalBoomer.Run(task1)
}

Custom output

You can write you own output to deal with the test result.

type Output interface {
 OnStart()
 OnEvent(data map[string]interface{})
 OnStop()
}

All the OnXXX function will be call in a separated goroutine, just in case some output will block.
But it will wait for all outputs return to avoid data lost.

It works like:

wg := sync.WaitGroup{}
wg.Add(len(outputs))
for _, output := range outputs {
 go func(o Output) {
 o.OnXXXX()
 wg.Done()
 }(output)
}
wg.Wait()

OnStart

OnStart will be call before the test starts.

OnEvent

By default, each output receive stats data from runner every three seconds.
OnEvent is responsible for dealing with the data.

Don’t write to the origin data! Because all outputs share the same reference.

OnStop

OnStop will be called before the test ends. If you are writing to a disk file, it’s time to flush.

API

See godoc [https://godoc.org/github.com/myzhan/boomer].

Options

For convenience, boomer supports several command line options.

Since it may conflict with user’s code, I’m planning to remove this feature and allow users
to set options programmatically.

--master-host

Host or IP address of locust master for distributed load testing.

Defaults to 127.0.0.1.

--master-port

The port to connect to that is used by the locust master for distributed load testing.

Defaults to 5557.

--run-tasks

Run tasks without connecting to the master, multiply tasks is separated by comma.

--max-rps

Max RPS that boomer can generate, disabled by default.

–max-rps=100 means the max RPS is limit to 100.

Defaults to 0.

--request-increase-rate

Request increase rate, disabled by default.

–request-increase-rate=100/1s means the threshold will ramp up.

--cpu-profile

Enable CPU profiling and specify a file path to save the result.

--cpu-profile-duration

CPU profile duration.

The timer will start when the process starts.

Defaults to 30 seconds.

--mem-profile

Enable memory profiling and specify a file path to save the result.

--mem-profile-duration

Memory profile duration.

The timer will start when the process starts.

Defaults to 30 seconds.

Profiling

You may think there are bottlenecks in your load generator, don’t hesitate to do profiling.

Both CPU and memory profiling are supported.

It’s not suggested to run CPU profiling and memory profiling at the same time.

CPU Profiling

1. run locust master.
2. run boomer with cpu profiling for 30 seconds.
$ go run main.go -cpu-profile cpu.pprof -cpu-profile-duration 30s
3. start test in the WebUI.
4. run pprof.
$ go tool pprof cpu.pprof
Type: cpu
Time: Nov 14, 2018 at 8:04pm (CST)
Duration: 30.17s, Total samples = 12.07s (40.01%)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) web

Memory Profiling

1. run locust master.
2. run boomer with memory profiling for 30 seconds.
$ go run main.go -mem-profile mem.pprof -mem-profile-duration 30s
3. start test in the WebUI.
4. run pprof and try 'go tool pprof --help' to learn more.
$ go tool pprof -alloc_space mem.pprof
Type: alloc_space
Time: Nov 14, 2018 at 8:26pm (CST)
Entering interactive mode (type "help" for commands, "o" for options)
(pprof) top

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Boomer Documentation

 		
 What is Boomer?

 		
 Features

 		
 Installation

 		
 The goczmq dependency

 		
 Quickstart

 		
 Code

 		
 Test

 		
 Build

 		
 Run

 		
 Open up Locust’s web interface

 		
 Running Mode

 		
 Distributed

 		
 Standalone

 		
 Custom output

 		
 OnStart

 		
 OnEvent

 		
 OnStop

 		
 API

 		
 Options

 		
 –master-host

 		
 –master-port

 		
 –run-tasks

 		
 –max-rps

 		
 –request-increase-rate

 		
 –cpu-profile

 		
 –cpu-profile-duration

 		
 –mem-profile

 		
 –mem-profile-duration

 		
 Profiling

 		
 CPU Profiling

 		
 Memory Profiling

_static/up.png

_static/up-pressed.png

